organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tsonko Kolev,^a Zornitza Glavcheva,^b Denitsa Yancheva,^b Markus Schürmann,^a Dirk-Christian Kleb,^a Hans Preut^a* and Paul Bleckmann^a

^aFachbereich Chemie, Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany, and ^bBulgarian Academy of Sciences, Institute of Organic Chemistry, 1113 Sofia, Bulgaria

Correspondence e-mail: uch002@uxp1.hrz.uni-dortmund.de

Key indicators

Single-crystal X-ray study T = 291 K Mean σ (C–C) = 0.003 Å R factor = 0.052 wR factor = 0.130 Data-to-parameter ratio = 18.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-{3-[2-(1*H*-Indol-3-yl)vinyl]-5,5-dimethylcyclohex-2enylidene}malononitrile

The title compound, $C_{21}H_{19}N_3$, first synthesized by Lemke [*Chem. Ber.* (1970), **103**, 1894–1898], due to its solvatochromic behaviour is supposed to be a good candidate for non-linear optical (NLO) and electrooptical applications. The molecule is nearly planar, with the exception of the $C(CH_3)_2$ group; the disubstituted C atom is displaced by 0.627 (2) Å from the mean plane of the remaining atoms of the cyclohexene ring. The hydrogen bond formed by the indolyl NH group with the N atom of one of the cyano groups [N···N 3.168 (3) Å and N-H···N 148°], links the molecules into infinite chains stretching along the [101] direction of the crystal. The existence of this hydrogen bond was also confirmed by FT-IR spectral data [$\nu_{N-H} = 3388 \text{ cm}^{-1}$ in the solid state (KBr pellet)].

Received 22 June 2001 Accepted 6 July 2001 Online 20 July 2001

Experimental

The title compound was synthesized according to Lemke (1970). The preparation of the starting compound, [3,5,5-trimethyl(cyclohex-2envlidene)]malonodinitrile, is described in one of our previous papers (Kolev et al., 2001). The starting compound (6 mmol, 20% excess) was dissolved in 80 ml of dry toluene under continuous stirring. Indole-3aldehyde (5 mmol Across), dissolved in 50 ml of dry toluene, was added to the solution. Nearly 1 ml of triethylamine was used as a catalyst. The solution became dark-red after a few minutes and the resulting compound started precipitating. After 16 h reaction time, the solution was cooled and the resulting title compound was isolated and recrystallized twice from glacial acetic acid and from dry toluene [m.p. 519-521 K; literature m.p. 520-522 K (Lemke, 1970)]. The purity of the compound was confirmed by elemental analysis, IR, UVvis and mass spectrometry. Crystals were grown from a glacial acetic acid solution by slow evaporation at room temperature over a period of several weeks.

Crystal data

$C_{21}H_{19}N_3$
$M_r = 313.39$
Monoclinic, $P2_1/n$
a = 15.5033 (3) Å
b = 7.5309 (2) Å
c = 15.9609 (4) Å
$\beta = 110.774 \ (1)^{\circ}$
V = 1742.34 (7) Å ³
Z = 4

 $D_x = 1.195 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 15212 reflections $\theta = 3.0-27.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 291 (1) KPlate, red $0.40 \times 0.30 \times 0.05 \text{ mm}$

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Data collection

Nonius KappaCCD diffractometer 292 frames <i>via</i> ω -rotation ($\Delta \omega = 1^{\circ}$) with 3 sets at different κ -angles and two times 20 s per frame 15 212 measured reflections	1785 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$ $\theta_{\text{max}} = 27.5^{\circ}$ $h = -20 \rightarrow 20$ $k = -9 \rightarrow 9$
3946 independent reflections	$l = -20 \rightarrow 18$
Refinement	
Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.052$	$w = 1/[\sigma^{\bar{2}}(F_o^2) + (0.0595P)^2]$
$wR(F^2) = 0.130$	where $P = (F_0^2 + 2F_c^2)/3$

$R[F^2 > 2\sigma(F^2)] = 0.052$	$w = 1/[\sigma^2(F_o^2) + (0.0)]$
$wR(F^2) = 0.130$	where $P = (F_o^2 + Z_o^2)$
S = 0.92	$(\Delta/\sigma)_{\rm max} < 0.001$
3946 reflections	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
219 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\overrightarrow{N3-H3\cdots N2^{i}}$ C21-H21···N1 ⁱⁱ	0.86 0.93	2.41 2.55	3.168 (3) 3.301 (3)	148 138

Symmetry codes: (i) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $z - \frac{1}{2}$; (ii) $\frac{1}{2} + x$, $\frac{3}{2} - y$, $z - \frac{1}{2}$.

H atoms were placed in calculated positions with U_{iso} constrained to be $1.5U_{\rm eq}$ of the carrier atom for the methyl H atoms and $1.2U_{\rm eq}$ for the remaining H atoms.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97, PARST95 (Nardelli, 1995) and PLATON (Spek, 2001).

Figure 1

View of the title compound showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 50% probability levels. H atoms are drawn as circles of arbitrary radii.

We thank the 'Internationales Büro bei der DLR' (Germany) for the support of our project BUL-006-99. One of us (TK) thanks the Alexander von Humboldt-Stiftung for financial support.

References

Kolev, T., Glavcheva, Z., Yancheva, D., Schürmann, M., Kleb, D.-C., Preut, H. & Bleckmann, P. (2001). Acta Cryst. E57, 0561-0562.

- Lemke, R. (1970). Chem. Ber. 103, 1894-1898.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307-326.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1 Siemens Analytical Xray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2001). PLATON. University of Utrecht, The Netherlands.